Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Scand J Med Sci Sports ; 34(4): e14610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534053

RESUMO

The aim was to use a robust statistical approach to examine whether physical fitness at entry influences performance changes between men and women undertaking British Army basic training (BT). Performance of 2 km run, seated medicine ball throw (MBT) and isometric mid-thigh pull (MTP) were assessed at entry and completion of Standard Entry (SE), Junior Entry-Short (JE-Short), and Junior Entry-Long (JE-Long) training for 2350 (272 women) recruits. Performance change was analyzed with entry performance as a covariate (ANCOVA), with an additional interaction term allowing different slopes for courses and genders (p < 0.05). Overall, BT courses saw average improvements in 2 km run performance (SE: -6.8% [-0.62 min], JE-Short: -4.6% [-0.43 min], JE-Long: -7.7% [-0.70 min]; all p < 0.001) and MBT (1.0-8.8% [0.04-0.34 m]; all p < 0.05) and MTP (4.5-26.9% [6.5-28.8 kg]; all p < 0.001). Regression models indicate an expected form of "regression to the mean" whereby test performance change was negatively associated with entry fitness in each course (those with low baseline fitness exhibit larger training improvements; all interaction effects: p < 0.001, η p 2 $$ {\eta}_{\mathrm{p}}^2 $$ > 0.006), particularly for women. However, when matched for entry fitness, men displayed considerable improvements in all tests, relative to women. Training courses were effective in developing recruit physical fitness, whereby the level of improvement is, in large part, dependent on entry fitness. Factors including age, physical maturity, course length, and physical training, could also contribute to the variability in training response between genders and should be considered when analyzing and/or developing physical fitness in these cohorts for future success of military job-task performance.


Assuntos
Militares , Humanos , Masculino , Feminino , Aptidão Física/fisiologia , Desempenho Físico Funcional , Exercício Físico , Análise e Desempenho de Tarefas , Teste de Esforço
2.
Physiol Rep ; 12(6): e15953, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38490811

RESUMO

This study compared the structural and cellular skeletal muscle factors underpinning adaptations in maximal strength, power, aerobic capacity, and lean body mass to a 12-week concurrent resistance and interval training program in men and women. Recreationally active women and men completed three training sessions per week consisting of high-intensity, low-volume resistance training followed by interval training performed using a variety upper and lower body exercises representative of military occupational tasks. Pre- and post-training vastus lateralis muscle biopsies were analyzed for changes in muscle fiber type, cross-sectional area, capillarization, and mitochondrial biogenesis marker content. Changes in maximal strength, aerobic capacity, and lean body mass (LBM) were also assessed. Training elicited hypertrophy of type I (12.9%; p = 0.016) and type IIa (12.7%; p = 0.007) muscle fibers in men only. In both sexes, training decreased type IIx fiber expression (1.9%; p = 0.046) and increased total PGC-1α (29.7%, p < 0.001) and citrate synthase (11.0%; p < 0.014) content, but had no effect on COX IV content or muscle capillarization. In both sexes, training increased maximal strength and LBM but not aerobic capacity. The concurrent training program was effective at increasing strength and LBM but not at improving aerobic capacity or skeletal muscle adaptations underpinning aerobic performance.


Assuntos
Músculo Esquelético , Treinamento de Força , Masculino , Humanos , Feminino , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps , Exercício Físico/fisiologia , Terapia por Exercício , Força Muscular
3.
J Appl Physiol (1985) ; 136(4): 938-948, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385180

RESUMO

This study investigated sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged military training. Twenty-three trainees (14 women) completed 44-wk military training (three terms of 14 wk with 2-wk adventurous training). Dietary intake and total energy expenditure were measured over 10 days during each term by weighed food and doubly labeled water. Body composition was measured by dual-energy X-ray absorptiometry (DXA) at baseline and at the end of each term. Circulating metabolic and endocrine markers were measured at baseline and at the end of terms 2 and 3. Absolute energy intake and total energy expenditure were higher, and energy balance was lower, for men than women (P ≤ 0.008). Absolute energy intake and balance were lower, and total energy expenditure was higher, during term 2 than terms 1 and 3 (P < 0.001). Lean mass did not change with training (P = 0.081). Fat mass and body fat increased from term 1 to terms 2 and 3 (P ≤ 0.045). Leptin increased from baseline to terms 2 and 3 in women (P ≤ 0.002) but not in men (P ≥ 0.251). Testosterone and free androgen index increased from baseline to term 3 (P ≤ 0.018). Free thyroxine (T4) decreased and thyroid-stimulating hormone (TSH) increased from baseline to term 2 and term 3 (P ≤ 0.031). Cortisol decreased from baseline to term 3 (P = 0.030). IGF-I and total triiodothyronine (T3) did not change with training (P ≥ 0.148). Men experienced greater energy deficits than women during military training due to higher total energy expenditure.NEW & NOTEWORTHY Energy deficits are common in military training and can result in endocrine and metabolic disturbances. This study provides first investigation of sex differences in energy balance, body composition, and endocrine and metabolic markers in response to prolonged and arduous military training. Men experienced greater energy deficits than women due to higher energy expenditure, which was not compensated for by increased energy intake. These energy deficits were not associated with decreases in fat or lean mass or metabolic or endocrine function.


Assuntos
Militares , Humanos , Feminino , Masculino , Caracteres Sexuais , Composição Corporal , Tecido Adiposo/metabolismo , Ingestão de Energia , Metabolismo Energético
4.
Med Sci Sports Exerc ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38377006

RESUMO

BACKGROUND: Resistance training confers numerous health benefits that are mediated in part by circulating factors. Towards an enhanced molecular understanding, there is growing interest in a class of signaling biomarkers called extracellular vesicles (EVs). Extracellular vesicles support physiological adaptations to exercise by transporting their cargo (e.g., microRNA [miRNA]) to target cells. Previous studies of changes in EV cargo have focused on aerobic exercise, with limited data examining the effects of resistance exercise. We examined the effect of acute resistance exercise on circulating EV miRNAs and their predicted target pathways. METHODS: Ten participants (5 men; age: 26.9 ± 5.5 y, height: 1.7 ± 0.1 m, body mass: 74.0 ± 11.1 kg, body fat: 25.7 ± 11.6 %) completed an acute heavy resistance exercise test (AHRET) consisting of six sets of 10 repetitions of back squats using 75% one-repetition maximum. Pre-/post-AHRET, EVs were isolated from plasma using size exclusion chromatography, and RNA sequencing was performed. Differentially expressed (DE) miRNAs between pre- and post-AHRET EVs were analyzed using Ingenuity Pathway Analysis to predict target messenger RNAs and their target biological pathways. RESULTS: Overall, 34 miRNAs were altered by AHRET (p < 0.05), targeting 4,895 mRNAs, with enrichment of 175 canonical pathways (p < 0.01), including 12 related to growth/metabolism (p53, IGF-I, STAT3, PPAR, JAK/STAT, growth hormone, WNT/ß-catenin, ERK/MAPK, AMPK, mTOR, and PI3K/AKT) and eight to inflammation signaling (TGF-ß, IL-8, IL-7, IL-3, IL-6, IL-2, IL-17, IL-10). CONCLUSIONS: Acute resistance exercise alters EV miRNAs targeting pathways involved in growth, metabolism, and immune function. Circulating EVs may serve as significant adaptive signaling molecules influenced by exercise training.

5.
Physiol Rep ; 12(3): e15906, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38296351

RESUMO

Weight-bearing physical activity can stimulate bone adaptation. This investigation explored the effect of an acute bout of resistance exercise before and after resistance+interval training on circulating biomarkers of bone metabolism and muscle-bone crosstalk. Healthy young male and female participants (n = 21 male, 28 ± 4 years; n = 17 female, 27 ± 5 years) performed a 6 × 10 squat test (75% 1RM) before and after a 12-week resistance+interval training program. Before and after completion of the training program, blood samples were collected at rest, immediately postexercise, and 2 h postexercise. Blood samples were analyzed for ßCTX, P1NP, sclerostin, osteocalcin, IGF-1, and irisin. Significant effects of acute exercise (main effect of time) were observed as increases in concentrations of IGF-1, irisin, osteocalcin, and P1NP from rest to postexercise. A sex*time interaction indicated a greater decline in ßCTX concentration from rest to 2 h postexercise and a greater increase in sclerostin concentration from rest to immediately postexercise in male compared with female participants. Sex differences (main effect of sex) were also observed for irisin and P1NP concentrations. In summary, changes in concentrations of biochemical markers of bone metabolism and muscle-bone crosstalk were observed in males and females after an acute bout of resistance exercise and following 12 weeks of resistance+interval training.


Assuntos
Treinamento de Força , Humanos , Masculino , Feminino , Adulto Jovem , Fator de Crescimento Insulin-Like I , Osteocalcina , Fibronectinas , Exercício Físico , Remodelação Óssea
6.
Med Sci Sports Exerc ; 56(2): 340-349, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37771068

RESUMO

PURPOSE: Servicewomen are at increased risk of common mental disorders compared with servicemen and their female civilian counterparts. The prevalence of eating disorder risk and common mental disorders, and associated risk factors in British servicewomen are poorly understood. METHODS: All women younger than 45 yr in the UK Armed Forces were invited to complete a survey about demographics, exercise behaviors, eating behaviors, and common mental disorders. RESULTS: A total of 3022 women participated; 13% of participants were at high risk of an eating disorder based on Brief Eating Disorder in Athletes Questionnaire and Female Athlete Screening Tool scores. Twenty-five percent of participants had symptoms of anxiety (seven-item Generalized Anxiety Disorder Assessment score ≥10), and 26% had symptoms of depression (nine-item Patient Health Questionnaire score ≥10). Older age was associated with a lower risk, and heavier body mass was associated with a higher risk, of eating disorders ( P ≤ 0.043). Older age and higher rank were associated with a lower risk of symptoms of anxiety and depression ( P ≤ 0.031), and a heavier body mass was associated with a higher risk of symptoms of depression ( P ≤ 0.012). Longer habitual sleep duration was associated with a lower risk of eating disorders and symptoms of anxiety and depression ( P ≤ 0.028). A higher volume of field exercise was associated with a lower risk, and a higher volume of military physical training and personal physical training was associated with a higher risk, of eating disorders ( P ≤ 0.024). Job role and deployment history were not associated with any outcome. CONCLUSIONS: Sleeping and training habits provide potential novel targets for exploring how common mental disorders can be managed in British servicewomen.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Militares , Feminino , Humanos , Ansiedade/epidemiologia , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia , Transtornos de Ansiedade , Fatores de Risco , Depressão/epidemiologia
7.
Eur J Sport Sci ; 23(12): 2411-2424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37517090

RESUMO

In the British Army, ground close combat roles have opened to women, however, they must pass the newly developed, gender-neutral Role Fitness Tests for Soldiers (RFT(S)). Due to physiological differences between sexes, training that optimally prepares both sexes for military occupational demands and the RFT(S) is needed. The purpose of this study was to determine the efficacy of a 12-week periodized strength and power programme with concurrent interval training on RFT(S) performance and determine if performance adaptations differed between sexes. 39 recruit-aged (18-35 yrs) participants, including 21 men (29 ± 1 yrs) and 18 women (27 ± 1 yrs), completed the study. Participants performed 3 training sessions per week that included strength and power resistance training followed by interval training. Pre- to post-training, improvements were observed for seated medicine ball throw (4.5%, p < 0.001), casualty drag (29.8%, p < 0.001), single lift (8.9%, p < 0.001), water can carry (13.8%, p = 0.012), repeated lift and carry (6.5%, p < 0.001), 2-km load carriage (7.2%, p < 0.001) and 2-km run (3.2%, p = 0.021). Pre- to post-training improvements were also observed for maximal squat (27.0%, p < 0.001), bench press (8.9%, p < 0.001) and deadlift (24.6%, p < 0.001) maximal strength, but not upper body power or aerobic capacity. No differences in RFT(S) improvements were observed between sexes, however men performed better than women in all RFT(S) and physical performance measures. Concurrent resistance and interval training improves military occupational performance in men and women; however, women may need more training than men to pass the gender-neutral RFT(S).


Twelve weeks of concurrent resistance and interval training improved seated medicine ball throw, casualty drag, single lift, water can carry, repeated lift and carry, 2-km load carriage and 2-km run performance, military occupational performance measures that comprise the British Army Role Fitness Test for Soldiers (RFT(S)).Men and women demonstrated similar military occupational performance improvements from pre- to post-training, however, men performed better than women in all measures.Simple linear regression analyses between improvements in RFT(S) tasks and measures of physical fitness (one-repetition maximal strength, upper body power, lower body power, aerobic capacity) demonstrated limited significant associations suggesting that military occupational performance improvement relies on simultaneous development of multiple fitness domains.


Assuntos
Militares , Treinamento de Força , Feminino , Humanos , Masculino , Exercício Físico , Tolerância ao Exercício/fisiologia , Força Muscular , Aptidão Física/fisiologia , Análise e Desempenho de Tarefas , Adolescente , Adulto Jovem , Adulto
8.
BMC Musculoskelet Disord ; 24(1): 496, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328859

RESUMO

BACKGROUND: Military field exercises are characterised by high volumes of exercise and prolonged periods of load carriage. Exercise can decrease circulating serum calcium and increase parathyroid hormone and bone resorption. These disturbances to calcium and bone metabolism can be attenuated with calcium supplementation immediately before exercise. This randomised crossover trial will investigate the effect of calcium supplementation on calcium and bone metabolism, and bone mineral balance, during load carriage exercise in women. METHODS: Thirty women (eumenorrheic or using the combined oral contraceptive pill, intrauterine system, or intrauterine device) will complete two experimental testing sessions either with, or without, a calcium supplement (1000 mg). Each experimental testing session will involve one 120 min session of load carriage exercise carrying 20 kg. Venous blood samples will be taken and analysed for biochemical markers of bone resorption and formation, calcium metabolism, and endocrine function. Urine will be collected pre- and post-load carriage to measure calcium isotopes for the calculation of bone calcium balance. DISCUSSION: The results from this study will help identify whether supplementing women with calcium during load carriage is protective of bone and calcium homeostasis. TRIAL REGISTRATION: NCT04823156 (clinicaltrials.gov).


Assuntos
Reabsorção Óssea , Cálcio , Feminino , Humanos , Cálcio/metabolismo , Estudos Cross-Over , Hormônio Paratireóideo , Reabsorção Óssea/prevenção & controle , Suplementos Nutricionais , Biomarcadores , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
J Appl Physiol (1985) ; 134(6): 1481-1495, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141423

RESUMO

This study investigated sex differences in, and the effect of protein supplementation on, bone metabolism during a 36-h military field exercise. Forty-four British Army Officer cadets (14 women) completed a 36-h field exercise. Participants consumed either their habitual diet [n = 14 women (Women) and n = 15 men (Men Controls)] or the habitual diet with an additional 46.6 g·day-1 of protein for men [n = 15 men (Men Protein)]. Women and Men Protein were compared with Men Controls to examine the effect of sex and protein supplementation. Circulating markers of bone metabolism were measured before, 24 h after (postexercise), and 96 h after (recovery) the field exercise. Beta C-telopeptide cross links of type 1 collagen and cortisol were not different between time points or Women and Men Controls (P ≥ 0.094). Procollagen type I N-terminal propeptide decreased from baseline to postexercise (P < 0.001) and recovery (P < 0.001) in Women and Men Controls. Parathyroid hormone (PTH) increased from baseline to post-exercise (P = 0.006) and decreased from postexercise to recovery (P = 0.047) in Women and Men Controls. Total 25(OH)D increased from baseline to postexercise (P = 0.038) and recovery (P < 0.001) in Women and Men Controls. Testosterone decreased from baseline to post-exercise (P < 0.001) and recovery (P = 0.007) in Men Controls, but did not change for Women (all P = 1.000). Protein supplementation in men had no effect on any marker. Men and women experience similar changes to bone metabolism-decreased bone formation and increased PTH-following a short-field exercise. Protein had no protective effect likely because of the energy deficit.NEW & NOTEWORTHY Energy deficits are common in arduous military training and can cause disturbances to bone metabolism. This study provides first evidence that short periods of severe energy deficit and arduous exercise-in the form of a 36-h military field exercise-can suppress bone formation for at least 96 h, and the suppression in bone formation was not different between men and women. Protein feeding does not offset decreases in bone formation during severe energy deficits.


Assuntos
Militares , Humanos , Masculino , Feminino , Hormônio Paratireóideo , Osso e Ossos , Suplementos Nutricionais , Metabolismo Energético
10.
Med Sci Sports Exerc ; 55(7): 1307-1316, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893306

RESUMO

PURPOSE: This study aimed to investigate associations between menstrual function, eating disorders, and risk of low energy availability with musculoskeletal injuries in British servicewomen. METHODS: All women younger than 45 yr in the UK Armed Forces were invited to complete a survey about menstrual function, eating behaviors, exercise behaviors, and injury history. RESULTS: A total of 3022 women participated; 2% had a bone stress injury in the last 12 months, 20% had ever had a bone stress injury, 40% had a time-loss musculoskeletal injury in the last 12 months, and 11% were medically downgraded for a musculoskeletal injury. Menstrual disturbances (oligomenorrhea/amenorrhea, history of amenorrhea, and delayed menarche) were not associated with injury. Women at high risk of disordered eating (Female Athlete Screening Tool score >94) were at higher risk of history of a bone stress injury (odds ratio (OR; 95% confidence interval (CI)), 2.29 (1.67-3.14); P < 0.001) and time-loss injury in the last 12 months (OR (95% CI), 1.56 (1.21-2.03); P < 0.001) than women at low risk of disordered eating. Women at high risk of low energy availability (Low Energy Availability in Females Questionnaire score ≥8) were at higher risk of bone stress injury in the last 12 months (OR (95% CI), 3.62 (2.07-6.49); P < 0.001), history of a bone stress injury (OR (95% CI), 2.08 (1.66-2.59); P < 0.001), a time-loss injury in the last 12 months (OR (95% CI), 9.69 (7.90-11.9); P < 0.001), and being medically downgraded with an injury (OR (95% CI), 3.78 (2.84-5.04); P < 0.001) than women at low risk of low energy availability. CONCLUSIONS: Eating disorders and risk of low energy availability provide targets for protecting against musculoskeletal injuries in servicewomen.


Assuntos
Amenorreia , Transtornos da Alimentação e da Ingestão de Alimentos , Feminino , Humanos , Amenorreia/complicações , Distúrbios Menstruais , Exercício Físico , Menstruação , Transtornos da Alimentação e da Ingestão de Alimentos/epidemiologia
11.
Sports Med Open ; 9(1): 16, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36811697

RESUMO

Prolonged low energy availability, which is the underpinning aetiology of the Relative Energy Deficiency in Sport and the Female and Male Athlete Triad frameworks, can have unfavourable impacts on both health and performance in athletes. Energy availability is calculated as energy intake minus exercise energy expenditure, expressed relative to fat free mass. The current measurement of energy intake is recognized as a major limitation for assessing energy availability due to its reliance on self-report methods, in addition to its short-term nature. This article introduces the application of the energy balance method for the measurement of energy intake, within the context of energy availability. The energy balance method requires quantification of the change in body energy stores over time, with concurrent measurement of total energy expenditure. This provides an objective calculation of energy intake, which can then be used for the assessment of energy availability. This approach, the Energy Availability - Energy Balance (EAEB) method, increases the reliance on objective measurements, provides an indication of energy availability status over longer periods and removes athlete burden to self-report energy intake. Implementation of the EAEB method could be used to objectively identify and detect low energy availability, with implications for the diagnosis and management of Relative Energy Deficiency in Sport and the Female and Male Athlete Triad.

12.
BMJ Mil Health ; 169(1): 62-68, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657827

RESUMO

INTRODUCTION: Following the opening of all combat roles to women across the UK Armed Forces, there is a requirement to understand the risk of injury to these female personnel. Women injure at a higher rate than men during basic military training, but fewer data are published from individuals who have passed military training. METHODS: A bespoke survey was designed to investigate differences in injury prevalence and medical downgrading between sexes and career employment groups (ie, job roles) in the UK Armed Forces. RESULTS: Questionnaire data were evaluated from 847 service personnel (87% men) employed in combat roles (Royal Marines, Infantry, Royal Armoured Corps, Royal Air Force Regiment (all men)) and non-combat roles (Royal Regiment of Artillery, Corps of Royal Engineers, Royal Logistic Corps and Combat Service Support Corps who were attached to one of the participating units (men and women)). Women reported more total (OR 1.64 (95% CI: 1.03 to 2.59), p=0.035), lower limb (OR 1.92 (95% CI: 1.23 to 2.98), p=0.004) and hip (OR 2.99 (95% CI: 1.59 to 5.62), p<0.001) musculoskeletal injuries in the previous 12 months than men, but there were no sex differences in the prevalence of current or career medical downgrading due to musculoskeletal injury (both p>0.05). There were no differences in 12-month musculoskeletal injury prevalence between men in combat roles and men in non-combat roles (all p>0.05), but men in non-combat roles were more likely to be currently medically downgraded (OR 1.88 (95% CI: 1.27 to 2.78), p=0.001) and medically downgraded during their career (OR 1.49 (95% CI: 1.11 to 2.00), p=0.008) due to musculoskeletal injury than men in combat roles. More time in service and quicker 1.5-mile run times were associated with increased prevalence of total musculoskeletal injuries, and female sex was a predictor of hip injury. CONCLUSIONS: Although women are at greater risk of injury than men, we have no evidence that combat employment is more injurious than non-combat employment. The prevention of hip injuries should form a specific focus of mitigation efforts for women.


Assuntos
Militares , Doenças Musculoesqueléticas , Masculino , Humanos , Feminino , Estudos de Coortes , Doenças Musculoesqueléticas/epidemiologia , Inquéritos e Questionários , Emprego
13.
Front Nutr ; 9: 984541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337622

RESUMO

Female athletes are at increased risk of menstrual disturbances. The prevalence of menstrual disturbances in British Servicewomen and the associated risk factors is unknown. All women under 45 years in the UK Armed Forces were invited to complete a survey about demographics, menstrual function, eating and exercise behaviors, and psychological well-being. 3,022 women participated; 18% had oligomenorrhoea or amenorrhoea in the last 12 months, 25% had a history of amenorrhoea, and 14% had delayed menarche. Women who sleep ≥ 8 h were at a lower risk of a history of amenorrhoea than women who sleep ≤ 5 h [odds ratio (95% confidence intervals) = 0.65 (0.48, 0.89), p = 0.006]. Women who completed > 10 days of field exercise in the last 12 months were at higher risk of a history of amenorrhoea than women completing no field exercise [1.45 (1.13, 1.85), p = 0.004]. Women at high risk of an eating disorder (FAST score >94) were at higher risk of oligomenorrhoea or amenorrhoea [1.97 (1.26, 3.04), p = 0.002] and history of amenorrhoea [2.14 (1.63, 2.79), p < 0.001]. Women with symptoms of anxiety or depression were at higher risk of a history of amenorrhoea [1.46 (1.20, 1.77) and 1.48 (1.22, 1.79), p < 0.001]. British Servicewomen had a similar prevalence of menstrual disturbances to some endurance athletes. Eating disorders, sleep behaviors, and management of mental health, provide targets for protecting health of the reproductive axis.

14.
Physiol Genomics ; 54(9): 350-359, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816651

RESUMO

Extracellular vesicles (EVs) are established mediators of adaptation to exercise. Currently, there are no published data comparing changes in EVs between men and women after resistance exercise. We tested the hypothesis that EV profiles would demonstrate a sex-specific signature following resistance exercise. Ten men and 10 women completed an acute heavy resistance exercise test for back squats using 75% of their one-repetition maximum. Blood was drawn before and immediately after exercise. EVs were isolated from plasma using size exclusion chromatography and stained with antibodies associated with exosomes (CD63), microvesicles (VAMP3), apoptotic bodies (THSD1), and a marker for skeletal muscle EVs (SGCA). CD63+ EV concentration and proportion of total EVs increased 23% (P = 0.006) and 113% (P = 0.005) in both sexes. EV mean size declined in men (P = 0.020), but not in women, suggesting a relative increase in small EVs in men. VAMP3+ EV concentration and proportion of total EVs increased by 93% (P = 0.025) and 61% (P = 0.030) in men and women, respectively. SGCA+ EV concentration was 69% higher in women compared with men independent of time (P = 0.007). Differences were also observed for CD63, VAMP3, and SGCA median fluorescence intensity, suggesting altered surface protein density according to sex and time. There were no significant effects of time or sex on THSD1+ EVs or fluorescence intensity. EV profiles, particularly among exosome-associated and muscle-derived EVs, exhibit sex-specific differences in response to resistance exercise which should be further studied to understand their relationship to training adaptations.


Assuntos
Exossomos , Vesículas Extracelulares , Treinamento de Força , Biomarcadores/metabolismo , Exossomos/química , Exossomos/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Proteína 3 Associada à Membrana da Vesícula/metabolismo
15.
Int J Sport Nutr Exerc Metab ; 32(3): 195-203, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393372

RESUMO

Military training is characterized by high daily energy expenditures which are difficult to match with energy intake, potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet training. Thirteen (seven women) Officer Cadets (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from energy intake (weighing of food and food diaries) and energy expenditure (doubly labeled water) measured in three periods of training: 9 days on-camp (CAMP), a 5-day field exercise (FEX), and a 9-day mixture of both CAMP and field-based training (MIX). Variables were compared by condition and gender with a repeated-measures analysis of variance. Negative EB was greatest during FEX (-2,197 ± 455 kcal/day) compared with CAMP (-692 ± 506 kcal/day; p < .001) and MIX (-1,280 ± 309 kcal/day; p < .001). EA was greatest in CAMP (23 ± 10 kcal·kg free-fat mass [FFM]-1·day-1) compared with FEX (1 ± 16 kcal·kg FFM-1·day-1; p = .002) and MIX (10 ± 7 kcal·kg FFM-1·day-1; p = .003), with no apparent difference between FEX and MIX (p = .071). Irrespective of condition, there were no apparent differences between gender in EB (p = .375) or EA (p = .385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training, and enhance the health and performance of military personnel.


Assuntos
Militares , Adulto , Ingestão de Energia , Metabolismo Energético , Exercício Físico , Feminino , Humanos , Estado Nutricional , Adulto Jovem
16.
Int J Sport Nutr Exerc Metab ; 32(3): 204-213, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294923

RESUMO

Dietary intake and physical activity impact performance and adaptation during training. The aims of this study were to compare energy and macronutrient intake during British Army Officer Cadet training with dietary guidelines and describe daily distribution of energy and macronutrient intake and estimated energy expenditure. Thirteen participants (seven women) were monitored during three discrete periods of military training for 9 days on-camp, 5 days of field exercise, and 9 days of a mixture of the two. Dietary intake was measured using researcher-led food weighing and food diaries, and energy expenditure was estimated from wrist-worn accelerometers. Energy intake was below guidelines for men (4,600 kcal/day) and women (3,500 kcal/day) during on-camp training (men = -16% and women = -9%), field exercise (men = -33% and women = -42%), and combined camp and field training (men and women both -34%). Carbohydrate intake of men and women were below guidelines (6 g·kg-1·day-1) during field exercise (men = -18% and women = -37%) and combined camp and field training (men = -33% and women = -39%), respectively. Protein intake was above guidelines (1.2 kcal·kg-1·day-1) for men and women during on-camp training (men = 48% and women = 39%) and was below guidelines during field exercise for women only (-27%). Energy and macronutrient intake during on-camp training centered around mealtimes with a discernible sleep/wake cycle for energy expenditure. During field exercise, energy and macronutrient intake were individually variable, and energy expenditure was high throughout the day and night. These findings could be used to inform evidenced-based interventions to change the amount and timing of energy and macronutrient intake around physical activity to optimize performance and adaptations during military training.


Assuntos
Militares , Condicionamento Físico Humano , Ingestão de Alimentos , Ingestão de Energia , Metabolismo Energético , Exercício Físico , Feminino , Humanos , Masculino
17.
Eur J Sport Sci ; 22(1): 99-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33840352

RESUMO

Combat roles are physically demanding and expose service personnel to operational stressors such as high levels of physical activity, restricted nutrient intake, sleep loss, psychological stress, and environmental extremes. Women have recently integrated into combat roles, but our knowledge of the physical, physiological, and psycho-cognitive responses to these operational stressors in women is limited. The aim of this narrative review was to evaluate the evidence for sex-specific physical, physiological, and psycho-cognitive responses to real, and simulated, military operational stress. Studies examining physical and cognitive performance, body composition, metabolism, hypothalamic-pituitary-gonadal axis, and psychological health outcomes were evaluated. These studies report that women expend less energy and lose less body mass and fat-free mass, but not fat mass, than men. Despite having similar physical performance decrements as men during operational stress, women experience greater physiological strain than men completing the same physical tasks, but this may be attributed to differences in fitness. From limited data, military operational stress suppresses hypothalamic-pituitary-gonadal, but not hypothalamic-pituitary-adrenal, axis function in both sexes. Men and women demonstrate different psychological and cognitive responses to operational stress, including disturbances in mood, with women having a higher risk of post-traumatic stress symptoms compared with men. Based on current evidence, separate strategies to maximize selection and combat training are not warranted until further data directly comparing men and women are available. However, targeted exercise training programmes may be advisable to offset the physical performance gap between sexes and optimize performance prior to inevitable declines caused by intense military operations.


Assuntos
Militares , Caracteres Sexuais , Composição Corporal , Cognição , Feminino , Humanos , Masculino , Militares/psicologia , Desempenho Físico Funcional , Estresse Fisiológico
18.
J Sci Med Sport ; 24(10): 995-1001, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34452842

RESUMO

Appropriate nutrition recommendations are required to optimise the health and performance of military personnel, yet limited data are available on whether male and female military personnel have different nutrition requirements. OBJECTIVES: To consider the evidence for sex-specific nutrition requirements to optimise the health and performance of military personnel. DESIGN: Narrative review. METHODS: Published literature was reviewed, with a focus on sex-specific requirements, in the following areas: nutrition for optimising muscle mass and function, nutrition during energy deficit, and nutrition for reproductive and bone health. RESULTS: There are limited data on sex differences in protein requirements but extant data suggest that, despite less muscle mass, on average, in women, sex-specific protein feeding strategies are not required to optimise muscle mass in military-aged individuals. Similarly, despite sex differences in metabolic and endocrine responses to energy deficit, current data do not suggest a requirement for sex-specific feeding strategies during energy deficit. Energy deficit impairs health and performance, most notably bone and reproductive health and these impairments are greater for women. Vitamin D, iron and calcium are important nutrients to protect the bone health of female military personnel due to increased risk of stress fracture. CONCLUSIONS: Women have an increased incidence of bone injuries, less muscle mass and are more susceptible to the negative effects of energy deficit, including compromised reproductive health. However, there are limited data on sex differences in response to various nutrition strategies designed to improve these elements of health and performance. Future studies should evaluate whether sex-specific feeding recommendations are required.


Assuntos
Militares , Necessidades Nutricionais , Desempenho Físico Funcional , Feminino , Humanos , Fatores Sexuais
19.
Comput Biol Med ; 134: 104506, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090016

RESUMO

OBJECTIVES: We aimed to determine the agreement between actual and predicted core body temperature, using the Heat Strain Decision Aid (HSDA), in non-Ground Close Combat (GCC) personnel wearing multi terrain pattern clothing during two stages of load carriage in temperate conditions. DESIGN: Cross-sectional. METHODS: Sixty participants (men = 49, women = 11, age 31 ± 8 years; height 171.1 ± 9.0 cm; body mass 78.1 ± 11.5 kg) completed two stages of load carriage, of increasing metabolic rate, as part of the development of new British Army physical employment standards (PES). An ingestible gastrointestinal sensor was used to measure core temperature. Testing was completed in wet bulb globe temperature conditions; 1.2-12.6 °C. Predictive accuracy and precision were analysed using individual and group mean inputs. Assessments were evaluated by bias, limits of agreement (LoA), mean absolute error (MAE), and root mean square error (RMSE). Accuracy was evaluated using a prediction bias of ±0.27 °C and by comparing predictions to the standard deviation of the actual core temperature. RESULTS: Modelling individual predictions provided an acceptable level of accuracy based on bias criterion; where the total of all trials bias ± LoA was 0.08 ± 0.82 °C. Predicted values were in close agreement with the actual data: MAE 0.37 °C and RMSE 0.46 °C for the collective data. Modelling using group mean inputs were less accurate than using individual inputs, but within the mean observed. CONCLUSION: The HSDA acceptably predicts core temperature during load carriage to the new British Army non-GCC PES, in temperate conditions.


Assuntos
Temperatura Alta , Militares , Adulto , Temperatura Corporal , Estudos Transversais , Técnicas de Apoio para a Decisão , Feminino , Humanos , Masculino , Roupa de Proteção , Adulto Jovem
20.
Am J Physiol Endocrinol Metab ; 321(2): E281-E291, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191631

RESUMO

Hypothalamic-pituitary-gonadal (HPG) axis suppression in exercising women can be caused by low energy availability (EA), but the impact of a real-world, multistressor training environment on reproductive and metabolic function is unknown. This study aimed to characterize reproductive and metabolic adaptation in women undertaking basic military training. A prospective cohort study in women undertaking 11-month initial military training (n = 47) was carried out. Dynamic low-dose 1-h gonadotrophin-releasing hormone (GnRH) tests were completed after 0 and 7 mo of training. Urine progesterone was sampled weekly throughout. Body composition (dual X-ray absorptiometry), fasting insulin resistance (homeostatic modeling assessment 2, HOMA2), leptin, sex steroids, anti-Müllerian hormone (AMH), and inhibin B were measured after 0, 7, and 11 mo with an additional assessment of body composition at 3 mo. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses were suppressed after 7 mo (both P < 0.001). Among noncontraceptive users (n = 20), 65% had regular (23-35 days) cycles preenrollment, falling to 24% by 7 mo of training. Of women in whom urine progesterone was measured (n = 24), 87% of cycles showed no evidence of ovulation. There was little change in AMH, LH, and estradiol, although inhibin B and FSH increased (P < 0.05). Fat mass fluctuated during training but at month 11 was unchanged from baseline. Fat-free mass did not change. Visceral adiposity, HOMA2, and leptin increased (all P < 0.001). HPG axis suppression with anovulation occurred in response to training without evidence of low EA. Increased insulin resistance may have contributed to the observed pituitary and ovarian dysfunction. Our findings are likely to represent an adaptive response of reproductive function to the multistressor nature of military training.NEW & NOTEWORTHY We characterized reproductive endocrine adaptation to prolonged arduous multistressor training in women. We identified marked suppression of hypothalamic-pituitary-gonadal (HPG) axis function during training but found no evidence of low energy availability despite high energy requirements. Our findings suggest a complex interplay of psychological and environmental stressors with suppression of the HPG axis via activation of the hypothalamic-pituitary adrenal (HPA) axis. The neuroendocrine impact of nonexercise stressors on the HPG axis during arduous training should be considered.


Assuntos
Adaptação Fisiológica , Fenômenos Reprodutivos Fisiológicos , Estresse Psicológico/metabolismo , Adulto , Composição Corporal , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Progesterona/metabolismo , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...